最短路径算法
1、Dijkstra算法
目的是求解固定起点分别到其余各点的最短路径
步骤如下:
- 准备工作:构建二位矩阵edge,edge[i][j]存储i->j的权重,如果i==j则edge[i][j]=0,如果i和j不是直达的,则edge[i][j]=MAX_INT
- 构建数组dis[],其中dis[i]表示其实点start->i之间的权重,不断更新,得到最小的权重
- 选取离start最近的直达点,(注,非直达的点一定会经过中间的跳变点,间接到达,首先考虑的一定是经过离start最近的点进行跳变)
- 判断dis[i]与dis[离start最近的点index]+edge[离start最近的点index][i]的大小,更新dis[i]
- 重复3-4(注意标记,防止重复计算)
#includeusing namespace std;const int max_int = ~(1<<31);const int min_int = (1<<31);int main(){ int n,m,s;//n is the number of nodes, m is the number of edges and s is the start node. int t1,t2,t3;//t1 is the start node, t2 is the end node and t3 is the weight between t1 and t2 cout<<"Please input the number of node(n), edges(m) and start node(s):"< >n>>m>>s; int edge[n+1][n+1];//Store the edges for the n nodes int dis[n+1], is_visited[n+1];// dis[k] store the min distance between s and k,\ is_visited store the status of the node(whether it is visited or not) //Init the edge[][] with the max_int for(int i=1; i<=n; i++){ for(int j = 1; j <= n; j++) if(i==j) edge[i][j] = 0; else edge[i][j] = max_int; } //Input the Edge data cout<<"Please input the edge data: t1(start node), t2(end node), t3(weight)"< >t1>>t2>>t3; edge[t1][t2] = t3; } /* * Init the is_visited[] with 0 * Init the dis[] */ for(int i=1; i<=n; i++){ is_visited[i] = 0; dis[i] = edge[s][i]; } is_visited[s] = 1; //The Dijkstra algorithm for(int i=1; i<=n; i++){ int u; // Store the min value index in dis[] which is not visited int min = max_int; // Store the min value in dis[] which is not visited for(int j=1; j<=n; j++){ if(is_visited[j]==0 && dis[j] dis[u]+edge[u][k]){ dis[k] = dis[u] + edge[u][k]; cout< <<" "< <<" "< <
2、Floyd算法
目的是求解任意两点的最短路径,核心思想是经过任意数量的节点进行中转,检查路径是否为最短
for(k=1;k<=n;k++)//经过k进行中转 for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(e[i][j]>e[i][k]+e[k][j]) e[i][j]=e[i][k]+e[k][j];